
Evolution of Computer
Architecture

Dr. Mohammed Abdulridha Hussain

Flynn’s Classification
Scalar

LookaheadSequential

Functional
Parallelism

I/E
Overlap

Pipeline
Multiple

Func. Units

Explicit
Vector

Implicit
Vector

Register-
to -register

Memory –to-
Memory

MIMDSIMD

MultiProcessor

Multicomputer

Processor
Array

Associative
Processor

I/E: Instruction Fetch and Execute

Massively Parallel
Processors (MPP)

SISD

SIMD

MIMD

MISD

Two Categories of Parallel Computers

1. Shared Memory Multiprocessors (tightly
coupled systems

2. Message Passing Multicomputers

SHARED MEMORY MULTIPROCESSOR MODELS:

a. Uniform Memory Access (UMA)

b. Non-Uniform Memory Access (NUMA)

c. Cache-Only Memory Architecture (COMA)

P: Processor, CSM: Cluster Shared Memory, GSM: Global Shared Memory
CIN: Cluster Interconnection Network

Pipelining

Dr. Mohammed Abdulridha Hussain

Introduction

• Linear Pipeline Processors

A linear pipeline Processor is a cascade of
processing stages which are linearly connected
to perform a fixed function over a stream of
data flowing from one end to the other.

Linear pipelines are applied for instruction
execution, arithmetic computation, and memory
access operations.

Asynchronous Pipeline

• Data flow between adjacent stages in an
asynchronous pipeline is controlled by a
handshaking protocol.

• When stage Si is ready to transmit, it sends a
ready signal to stage Si+1. After Si+1 receives the
incoming data, it returns as acknowledge signal
to Si.

• Asynchronous pipelines are useful in designing
communication channels in messagepassing
multicomputers.

S1

Asynchronous Pipeline

Input

Ready

ACK

S2
Ready

ACK

SK
Ready

ACK

Output

Ready

ACK

Total time required
Tk= [K + (n -1)] τ

Synchronous Pipeline

• Clocked latches are used to interface between
stages. The latches are made with master-
slave flip-flop, which can isolate inputs from
outputs. Upon the arrival of a clock pulse, all
latches transfer data to the next stage
simultaneously.

• The pipeline stages are combinational logic
circuits. It is desired to have approximately
equal delays in all stages.

Synchronous Pipeline

• These delays determine the clock period and
thus the speed of the pipeline.

L S1

Input

L S2 L SK

Output

Clock

d

τ τm

Four stage pipeline
1 2 3 4

S1 X

S2 X

S3 X

S4 X

Si = stage I
L = Latch
τ = Clock period

τm = Maximum stage delay
d = Latch delay
ACK = Acknowledge signal

Nonlinear Pipeline Processors

• A dynamic pipeline can be reconfigured to
perform variable functions at different times.

• Multiple reservation tables can be generated for
the evaluation of different functions.

• Each reservation table displays the time-space
flow of data through the pipeline for one function
evaluation. There is a many-to-many mapping
between various pipeline configurations and
different reservation tables.

Nonlinear Pipeline Processors

S1 S2 S3

Input

Output Y

Output X

A three stage pipeline

Latency and: is the number of time units (clock cycles) between two initiations of a pipeline

Must be Collision free Scheduling

1 2 3 4 5 6 7 8

S1 X X X

S2 X X

S3 X X X

Reservation table for function X

1 2 3 4 5 6

S1 Y Y

S2 Y

S3 Y Y Y

Reservation table for function Y

Dr. Mohammed Abdulridha Hussain

 In the following analysis, we provide three

performance measures for the goodness of a pipeline.

These are the Speed-up S(n), Throughput U(n), and

Efficiency E(n). It should be noted that in this analysis

we assume that the unit time T = t units.

 Consider the execution of m tasks (instructions) using

n-stages (units) pipeline. As can be seen, n + m - 1 time

units are required to complete m tasks.

 𝑆𝑝𝑒𝑒𝑑 − 𝑢𝑝 𝑆 𝑛 =
𝑇𝑖𝑚𝑒 𝑢𝑠𝑖𝑛𝑔 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔

𝑇𝑖𝑚𝑒 𝑢𝑠𝑖𝑛𝑔 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔

=
𝑚× 𝑛 × 𝑡

𝑛+𝑚−1 × 𝑡

=
𝑚× 𝑛

𝑛+𝑚 −1

 lim
𝑚→∞

𝑆 𝑛 = 𝑛

 𝑇ℎ𝑒𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑈 𝑛 =

𝑛𝑜. 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒 =
𝑚

𝑛+𝑚 −1 ×𝑡

 lim
𝑚→∞

𝑈 𝑛 = 1 𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 𝑡 = 1 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒

 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝐸 𝑛 = 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 −

𝑢𝑝 𝑡𝑜 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑝𝑒𝑒𝑑 − 𝑢𝑝 =
𝑆𝑝𝑒𝑒𝑑−𝑢𝑝

𝑛
=

𝑚

𝑛+𝑚−1

 lim
𝑚→∞

𝐸 𝑛 = 1

 Instruction dependency refers to the case whereby

fetching of an instruction depends on the results of

executing a previous instruction. Instruction

dependency manifests itself in the execution of a

conditional branch instruction. the next instruction to

fetch will not be known until the result of executing

instruction is known.

 Example 1 (PDF page 205)

 Data dependency in a pipeline occurs when a source

operand of instruction Ii depends on the results of

executing a preceding instruction, Ij, i > j. It should be

noted that although instruction Ii can be fetched, its

operand(s) may not be available until the results of

instruction Ij are stored.

 Example 2 (PDF page 206)

 Example 3(PDF page 208)

 Use of NOP (No Operation) This method can be used

in order to prevent the fetching of the wrong

instruction, in case of instruction dependency, or

fetching the wrong operand, in case of data

dependency.

 Example 4 (PDF page 210)

 Swap instructions

 One important condition that must be satisfied to

produce correct results is that the set of instructions that

are swapped with the branch instruction hold no data

and/or instruction dependency relationship among

them.

	ch6-Evolution of Computer Architecture
	ch6-Pipelining
	Ch6-Pipelining2

